Vector fields on spheres

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector Fields on Spheres

This paper presents a solution to the problem of finding the maximum number of linearly independent vector fields that can be placed on a sphere. To produce the correct upper bound, we make use of K-theory. After briefly recapitulating the basics of K-theory, we introduce Adams operations and compute the K-theory of the complex and real projective spaces. We then define the characteristic class...

متن کامل

Vector Fields on Spheres

In this paper we will address the question of how many nonvanishing, linearly independent tangent vector fields can exist on a sphere Sn−1 ⊆ R. By this we mean the following, a tangent vector field on Sn−1 = {x ∈ R : ‖x‖ = 1} is a map v : Sn−1 → R such that v(x) ⊥ x for all x ∈ Sn−1. However, by assumption v is nonvanishing, so we can normalize such that ‖v(x)‖ = 1 and we obtain a map v : Sn−1 ...

متن کامل

Instability of Hopf vector fields on Lorentzian Berger spheres

In this work, we study the stability of Hopf vector fields on Lorentzian Berger spheres as critical points of the energy, the volume and the generalized energy. In order to do so, we construct a family of vector fields using the simultaneous eigenfunctions of the Laplacian and of the vertical Laplacian of the sphere. The Hessians of the functionals are negative when they act on these particular...

متن کامل

Concurrent vector fields on Finsler spaces

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

متن کامل

Additive Schwarz preconditioners for interpolation of divergence-free vector fields on spheres

The linear system arised from the interpolation problem of surface divergence-free vector fields using radial basis functions (RBFs) tends to be ill-conditioned when the separation radius of the scattered data is small. When the surface under consideration is the unit sphere, we introduce a preconditioner based on the additive Schwarz method to accelerate the solution process. Theoretical estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1962

ISSN: 0040-9383

DOI: 10.1016/0040-9383(62)90096-4